臺灣綜合大學系統 105 學年度學士班轉學生聯合招生考試試題

	AN A+ N C	類組代碼	E00
科目名稱	微積分℃	科目碼	E0013
※本項考試依簡章	規定各考科均「不可以」使用計算機	本試題共	計 2 頁

- 一、 填充題(不需計算過程) 請於答案卷上作答,否則不予計分
 - 1. (12 points) Find the following limits:

(a) (6 points) For
$$a, b, c > 0$$
, $\lim_{x \to 0} \left(\frac{a^x + b^x + c^x}{3} \right)^{\frac{1}{x}} = \underline{\hspace{1cm}}$

(b) (6 points) Denote
$$\prod_{k=1}^n A_k = A_1 A_2 \cdots A_n$$
. Evaluate $\lim_{n \to \infty} \prod_{k=1}^n \left(1 + \frac{k}{n^2}\right) = \underline{\hspace{1cm}}$

2. (5 points) Suppose that the function
$$f(x) = \begin{cases} \frac{ax+b}{\sqrt{3x+1}-\sqrt{x+3}}, & x \neq 1 \\ 4, & x = 1 \end{cases}$$
 is continuous at $x = 1$. Then $(a,b) =$

- 3. (5 points) Define $f(x) = \tan^3 x$ on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and let f^{-1} be the inverse function of f.

 Find $\left(f^{-1}\right)'(3\sqrt{3}) = \underline{\qquad}$
- 4. (12 points) Compute the integrals

(a) (6 points)
$$\int \frac{\ln x}{(1-x)^2} dx =$$

(b) (6 points)
$$\int_{1}^{\infty} \frac{1}{e^{x+1} + e^{3-x}} dx = \underline{\hspace{1cm}}$$

- 5. (6 points) Let h be a differentiable function of x and y and let f(r,s) = h(rs, r+s). Assume that $\frac{\partial h}{\partial x}(6,5) = 1$ and $\frac{\partial h}{\partial y}(6,5) = 2$. Find $\frac{\partial f}{\partial s}(2,3) =$ _____.
- 二、 計算題(無計算過程不給分)
 - 6. (10 points) Find the general solution of the differential equation

$$(x^2 + 1)y' + 2xy = 4x^2$$

- 7. (10 points) Consider the series $\sum_{k=10}^{\infty} \frac{1}{k \ln k [\ln(\ln k)]^p}$. Determine all values of p such that the series converges.
- 8. (20 points) Let $f(x) = \frac{1}{\sqrt[3]{1+x^4}}$
 - (a) (10 points) Find the Taylor series of f(x) at x = 0. (Need to write down the general form.)
 - (b) (10 points) Find the interval of convergence of the Taylor series in Problem(a).

臺灣綜合大學系統 105 學年度學士班轉學生聯合招生考試試題

科目名稱	微積分C	類組代碼	E00
		科目碼	E0013
※本項考試依簡章規定各考科均「不可以」使用計算機		本試題共言	十 2 頁

- 9. (10 points) Let $f(x,y) = x^2 + y^2 12x + 16y$. Find the maximum of f on the set $\{(x,y) \mid x^2 + y^2 \le 25\}$.
- 10. (10 points) Let E be the solid cone bounded below by $z=\sqrt{x^2+y^2}$ and above by z=2. Let $\mathbf{F}(x,y,z)=x\mathbf{i}+y\mathbf{j}+z\mathbf{k}$. Evaluate

$$\iiint\limits_{E} \mathrm{div} \mathbf{F} \ dV$$