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3. (5 points) Define f(z) = tan®z on (—

7. (10 points) Consider the series Z

8. (20 points) Let f(z) =
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1. (12 points) Find the following limits:

a’”‘+b’”+(f’)% B

(a) (6 points) For a,b,c >0, ilg% ( 3

b) (6 points) Denote | | Ax = A1 Az -+ Ay,. Evaluate lim 1 + k
(b)

n—')CxJ
k=1
axr +b 21
2. (5 points) Suppose that the function f(z) = V3z+1—Vz+3 & is con-
4 r=1

)

tinuous at z = 1. Then (a,b) =

) and let f~! be the inverse function of f.
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Find 2
_1) (3\/5) —

4. (12 points) Compute the integrals

Inz

(a) (6 points) /m dz =

1

5. (6 points) Let h be a dlfferentlable function of z and y and let f(r,s) = h(rs,r + s).

97 (9,3) =

Assume that e —(6,5) =1 and (6 5) = 2. Find B (

Oz
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6. (10 points) Find the general solution of the differential equation

(22 + 1)y’ + 22y = 4a?

1
kInk[In(lnk)]"

Determine all values of p such

k=10
that the series converges.
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(a) (10 points) Find the Taylor series of f(z) at £ = 0. (Need to write down the
general form.)

(b) (10 points) Find the interval of convergence of the Taylor series in Problem(a).
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9. (10 points) Let f(z,y) = 2% + y? — 122 + 16y. Find the maximum of f on the set
{(z,y) | z* +y* < 25}.

10. (10 points) Let E be the solid cone bounded below by z = y/z? + y? and above by
z =2. Let F(z,y, 2) = zi + yj + zk. Evaluate
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