臺灣綜合大學系統 105 學年度學士班轉學生聯合招生考試試題

科目名稱	基礎數學	類組代碼	D25
		科目碼	D2591
※本項考試依簡章規定各考科均「不可以」使用計算機		本試題共言	计 2 頁

(請提供詳細計算或證明過程,僅有答案而沒有過程得零分!)

1. (10分) Let
$$g(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Show that partial derivatives $g_x(0,0)$ and $g_y(0,0)$ exists while g(x,y) is not continuous at (0,0).

- 2. (10 β) Use the ε - δ definition to show that $f(x) = \sqrt{x+2}$ is continuous at x=2.
- 3. (10分) Evaluate the integral $\int \int_D (x+y)e^{x^2-y^2} dA$, where D is the region enclosed by the lines x-y=0, x-y=2, x+y=0 and x+y=3.
- 4. (10 \Re) Consider the power series $f(x) = \sum_{k=1}^{\infty} \frac{x^k}{k^2}$ and define the sequence of its partial sums

$$S_n(x) = \sum_{k=1}^n \frac{x^k}{k^2},$$

Find the interval \mathcal{I} of absolute convergence for the power series and show that $S_n(x)$ converges uniformly to f(x) on \mathcal{I} .

- 5. (6+6=12%) (a) Does the mean value theorem apply to $f(x)=\sqrt{|x|}$ on [-2,2]? Why?
 - (b) Prove that if $g(x) \in C^3[a, b]$ and g(a) = g'(a) = g''(a) = 0 and g(b) = 0, then there is a number $c \in (a, b)$, with $g^{(3)}(c) = 0$.

臺灣綜合大學系統 105 學年度學士班轉學生聯合招生考試試題

科目名稱	基礎數學	類組代碼	D25
		科目碼	D2591
※本項考試依簡章規定各考科均「不可以」使用計算機		本試題共言	十 2 頁

6.
$$(6+6=12 分)$$
 (a) Find the limit: $\lim_{x\to 0} \frac{2x^2 \sin \frac{1}{x}}{\sin x}$.

(b) Consider the nested intervals $[a_n, b_n]$:

$$a_n \le a_{n+1} \le \cdots \le \cdots b_{n+1} \le b_n$$
, for $n = 1, 2, 3, \cdots$

and $\lim_{n\to\infty} |a_n - b_n| = 0$. Prove that the sequence $\{a_n\}$ and $\{b_n\}$ converge to a unique real number α .

7. (6+6=12%) A sequence $\{a_n\} \subset \mathbb{R}$ is called a Cauchy sequence if for each $\varepsilon > 0$ there is a positive integer N such that $n, m \geq N$ implies $|a_n - a_m| < \varepsilon$.

(a) Let
$$s_n = \sum_{k=1}^n \frac{1}{2k-1}$$
. Is $\{s_n\}$ a Cauchy sequence? Why?

- (b) Is every Cauchy sequence monotone? Why?
- 8. (6+6=12%) (a) Suppose that $f,g:\mathbb{R}\to\mathbb{R}$ are uniformly continuous on \mathbb{R} . Prove that (f+g) is uniformly continuous on \mathbb{R} .
 - (b) Is f(x) = 1/x uniformly continuous on $(0, \infty)$? Why?
- 9. (6+6=12%) Consider sequence of functions $f_n(x) = \frac{nx}{nx+1}, x \in [0,\infty]$.
 - (a) Find the pointwise limit of $f_n(x)$. Call this limit f(x).
 - (b) Does $f_n(x)$ converge to f(x) uniformly on [0,1]? Why?