1	12 1 CH	類組代碼	D38
科目名稱	統計學	科目碼	D3801
※本項考記	式依簡章規定各考科均「不可以」使用計算機	本科試題	共計 9 頁

Choose the most appropriate ONE.

1. (4 points)

- (A) The mean of a sample will be equal to the mean of the population.
- (B) Outlier has undue effect on the sample mean, so does on the sample median.
- (C) Mean absolute deviation is easier to understand than standard deviation, but people seldom apply it because its mathematical property is hard to derive.
- (D) Standard deviation, not like sample mean, won't be greatly influenced by outlier(s).
- (E) Two samples, one with range 10, the other with range 15, then the variation of the second sample is large than the first one.

2. (4 points)

- (A) The hourly wages of a sample of 130 system analysts are mean = 60, median = 74, range = 20, variance = 324, then the coefficient of variation equals 30%.
- (B) When data are negatively skewed, the mean will usually be greater than the median.
- (C) Positive values of variance indicate positive relation between the independent and the dependent variable.
- (D) The coefficient of correlation can be larger than 1.
- (E) None of the above 4 questions.

3. (5 points)

- (A) Suppose A_1, A_2 and A_3 are three sets, if $P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2)P(A_3)$, then $P(A_i \cap A_j) = P(A_i)P(A_j)$, $i \neq j$.
- (B) Suppose sets A_1, A_2 and A_3 are three sets in the sample space S, and $A_i \cap A_j = \varphi, i \neq j$. Let D be any set in S, then

$$P(D) = \sum_{i=1}^{3} P(A_i) P(D|A_i) \text{ and } P(A_1|D) = \frac{P(A_1) P(D|A_1)}{\sum_{i=1}^{3} P(A_i) P(D|A_i)}.$$

- (C) Let A and B be two events with P(A) = 0.4, P(B) = 0.3, $P(A \cap B) = 0.2$, then the probability of only one of A or B occurs is 0.5.
- (D) X is a random variable taking values 0 and 1 respectively, also Y is a random variable taking values 10 and 20 only. If P(X=0, Y=10) = P(X=0)P(Y=10), then P(X=1, Y=10) = P(X=1)P(Y=10), P(X=0, Y=20) = P(X=0)P(Y=20) and P(X=1, Y=20) = P(X=1)P(Y=20).
- (E) Two continuous random variables X, Y, and one discrete random variable Z taking values 1 and 2. If Y increases with X, then Y also increases with X for each value of Z.

科目名稱	統計學	類組代碼	D38	
		科目碼	D3801	
※本項考言	试依簡章規定各考科均「不可以」使用計算機	本科試題	共計 9 頁	

- 4. (4 points) One box contains 1 red ball and 3 white balls. Three persons are to draw one ball in order. Let $X_i = 1$, i = 1, 2, 3, for person i draws a red ball, $X_i = 0$, otherwise.
 - (A) Each person has the same probability in drawing the red ball, $E(X_i)=1/4$, no matter his order in drawing ball from the box.
 - (B) The variances of each X_i are equal, which is 3/16.
 - (C) The X_i , i=1.2.3, are identically distributed.
 - (D) The probability of drawing a red ball for the second person depends on the outcome of the first person.
 - (E) True for all the above.
- 5. (4 points)
 - (A) Let A, B be sets in sample space S, Ø be empty set to S. Then sets A and Ø are mutually exclusive,
 - (B) If both A and B are not empty sets, then they cannot be independent and mutually exclusive simultaneously.
 - (C) The skewness of a Poisson distribution is always positive. It cannot be negative.
 - (D) True for all the above (A), (B) and (C).
 - (E) None for the above (A), (B), (C) and (D).
- 6. (4 points) In a statistics class, the average grade on the final examination was 75 with a standard deviation of 5.
 - (A) The value of the sum of the deviations from the mean, i.e., $\sum (x-\bar{x})$ may not be zero, where \bar{x} is the sample mean.
 - (B) Using Chebyshev's theorem, at least 96 percentage of the students received grades between 50 and 100.
 - (C) If the grades are normal, then 95% of the students will receive grades in between 60 and 90.
 - (D) By central limit theorem, the distribution of the course grades will close to be a normal if the class size is large.
 - (E) Wrong for all the above (A), (B), (C), and (D).
- 7. (5 points) Shown below is a portion of a computer output for regression analysis relating y (dependent variable) and x (independent variable).

科目名稱	みよし 銀	類組代碼	D38	
	統計學	科目碼	D3801	
※本項考試	式依簡章規定各考科均「不可以」使用計算機	本科試題	共計 9 頁	

	ANOVA	
	df	SS
Regression	1	24.011
Residual	8	67.989
	G 42 1	Standard
	Coefficients	Error
Intercept	11.065	2.043
x	-0.511	0.304

- (A) The sample size for the above regression analysis is 9.
- (B) It would be significant if we perform a t test to determine whether or not x and y are related. Let $\alpha = .05$.
- (C) Performing an F test to determine whether or not x and y are related would have the same results as the t test at $\alpha = .05$.
- (D) The square root of the F statistic is the t statistic.
- (E) The correlation coefficient of X and Y is 0.51.
- 8. (4 points) Let (Y_i, x_i) , i = 1, 2, ..., n, be a random sample.
 - (A) Since the sample correlation coefficient r = 0.92 is large, simple linear regression model would be suitable in modelling the relationship for Y and x.
 - (B) The estimated regression coefficient would have the same value as the correlation coefficient if both the sample standard deviation of Y and x are 1's.
 - (C) Normal distribution assumption is a MUST for the error term if we want to find the least squares estimates.
 - (D) A significant result can be obtained if r = 0.92.
 - (E) None of the above.
- 9. (5 points) Part of an Excel output relating x (independent variable) and y (dependent variable) is shown below.

科目名稱 統計學	な 1 朗	類組代碼	D38	
	科目碼	D3801		
※本項考記	式依簡章規定各考科均「不可以」使用計算機 	本科試題	共計 9 頁	

Su	mmary O	utput:			
Re	gression S	tatistics			
R S	Square		0.5149		
Ro	ot MSE		7.3413		
Ob	servations		11		
ANOVA					
	df	SS	MS	F	Significance F
Regression	?	(A)	?	(C)	0.0129
Residual	?	?	(B)		
Total	?	1000			
	Coefj	ficients	Standard Error	t Stat	P-value
Intercept	?		29.4818	3.7946	0.0043
x	(D)		0.7000	-3.0911	0.0129

Then (A) 514.9 (B) 53.9 (C) 9.55 (D) -2.1638 (E) True for all the above four.

- 10. (4 points) Let p_1 and p_2 be the proportions for some characteristic in populations 1 and 2. Random samples with size n_1 and n_2 respectively are drawn from the two populations and found that the sample proportions are \hat{p}_1 , \hat{p}_2 . We are interested in testing H_0 : $p_1 = p_2$
 - (A) The test statistic t should be taken to be

$$t = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}}$$

(B) The test statistic

$$t = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}},$$

where $\hat{p} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2}$ is better than the one in (A).

- (C) The test statistic in (B) is also good for the test $H_0: p_1 p_2 = d_0$ vs $H_a: p_1 p_2 \neq d_0$, where d_0 is some known value.
- (D) The test statistic in (A) is also good if $n_1 + n_2$ is large enough.
- (E) All the above are correct.

科目名稱 統計學	はよし倒	類組代碼	D38
	統計学	科目碼	D3801
※本項考試依額3	· 規定各考科均「不可以」使用計算機	本科試題	共計 9 頁

- 11. (4 points) Two independent random samples are drawn from $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$ with sizes $n_1 = 10$, $n_2 = 16$, respectively. It is found that $\overline{x_1} = 8$, $\overline{x_2} = 5$, $s_1^2 = 2$, $s_2^2 = 1$.
 - (A) The random variable $\frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2}$ can be used to construct a 95% confidence interval for $\frac{\sigma_1^2}{\sigma_2^2}$ by using F random variable with 9 and 15 degrees of freedom.
 - (B) Based on the results in (A), H_0 : $\sigma_1^2 = \sigma_2^2$ would be concluded if $\alpha = 0.05$.
 - (C) To test H_0 : $\mu_1 = \mu_2$, the test statistic to be used would be a t with 24 degrees of freedom.
 - (D) True for all above (A),(B) and (C).
 - (E) None for the above (A),(B), (C) and (D).
- 12. (5 points) Consider the paired data: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ and we want to compare the means of X and Y, μ_x , μ_y . Suppose we have \bar{x} , \bar{y} , S_x^2 , S_y^2 and r, the sample correlation coefficient, where S_x^2 and S_y^2 are the unbiased estimators for σ_x^2 , σ_y^2 , and r is positive.
 - (A) To test H_0 : $\mu_x = \mu_y$, the test statistic $t = \frac{(\bar{x} \bar{y})}{\sqrt{\frac{s_x^2}{n} + \frac{s_y^2}{n}}}$ is a good choice.
 - (B) Let $d_i = x_i y_i$, the test statistic $t_d = \frac{(\bar{x} \bar{y})}{s_d \sqrt{\frac{1}{n}}}$ is a better choice than the t in
 - (A) because $S_d^2 < S_x^2 + S_y^2$, where S_d is the sample standard deviation of d_i .
 - (C) Since $S_d^2 = S_x^2 + S_y^2 2S_{xy}$, S_{xy} has to be given so that t_d in (B) can be computed, where S_{xy} is the sample covariance of X and Y.
 - (D) True for the above (B) and (C).
 - (E) None for the above (A),(B), (C) and (D).
- 13. (5 points) Let $X_1, X_2, ..., X_n$, $n \ge 4$, be i.i.d. sample from some population with finite variance σ^2 . Which of the following estimators is unbiased for σ^2 and has

the smallest variance?
$$(\overline{X} = \sum_{i=1}^{n} X_i / n, \ \overline{X}_1 = \frac{\sum_{i=1}^{n_1} X_i}{n_1}, \ \overline{X}_2 = \frac{\sum_{i=n_1+1}^{n} X_i}{n_2}, \ n_1 + n_2 = \frac{\sum_{i=1}^{n} X_i}{n_2}$$

$$n; n_1 \ge 2, n_2 \ge 2)$$

$$(A)X_1^2 - X_2X_3$$

(B)
$$S^2 = \sum_{i=1}^n (X_i - \bar{X})^2 / (n-1)$$

(C)
$$(X_1 - X_2)^2/2$$

科目名稱統計學	はより毎	類組代碼	D38
	科目碼	D3801	
※本項考言		本科試題	共計 9 頁

- (D) $\hat{\sigma}^2 = \sum_{i=1}^n (X_i \bar{X})^2 / n$
- (E) $\left[\sum_{i=1}^{n_1} (X_i \overline{X}_1)^2 + \sum_{i=n_1+1}^n (X_i \overline{X}_2)^2\right] / (n_1 + n_2 2)$.
- 14. (4 points) A sample with size n=27 is obtained with $\hat{y}=1.2$ -0.8x, SSE (sum of squares due to error)=150, SSR (sum of squares due to regression)=24. Then
 - (A) R^2 (coefficient of determination) = 0.863,
 - (B) Correlation coefficient of Y_i and the predicted value $\hat{Y}_i = 0.37$,
 - (C) Correlation coefficient of Y_i and X_i is also 0.37,
 - (D) The statistics t(25) and F(1,25) can be applied to test H_0 : $\beta_1 = 0$, but the conclusion would be different.
 - (E) None for all the above (A),(B), (C) and (D)...
- 15. (4 points) Let $X_1, X_2, ..., X_n$ be independent, identically distributed Bernoulli random variables with probability of success E(X) = p.
 - (A) If $Y = \sum_{i=1}^{n} X_i$, then Y follows a binomial distribution with mean np and variance np(1-p).
 - (B) (Continued) If sample size n large, but p small, n×p constant, then Y approximates to a Poisson distribution with mean np and variance np
 - (C) If np is not small, say np ≥ 10 , then the distribution can be, approximated by normal distribution with mean np and variance np(1-p).
 - (D) For binomial, if p is not too extreme, say $0.2 \le p \le 0.9$, then the probability distribution can be approximated by normal distribution with mean np and variance np(1-p).
 - (E) True for all the above (A),(B), (C) and (D)..
- 16. (4 points) Let $X_1, X_2, ..., X_n, n=30$, be a random sample from an uniform distribution

$$f(x; \theta) = 1/\theta, 0 < x < \theta.$$

Then (choose the most appropriate one)

- $(A) E(X) = \theta,$
- (B) $Var(X) = \theta 2/3$,
- (C) \overline{X} approximately follows N(θ , θ 2/(3n)),
- (D) $(c\overline{X}, \infty)$, c > 0, can be a lower confidence bound for suitable $100(1-\alpha)\%$ confidence level for θ .

	はより毎	類組代碼	D38
科目名稱 統計學	科目碼	D3801	
※本項考言	· 试依簡章規定各考科均「不可以」使用計算機	本科試題	共計 9 頁

- (E) (- ∞ , $c\overline{X}$), c>0, is a suitable upper confidence bound for some suitable 100(1- α)% confidence level for θ .
- 17. (4 points) In a survey sampling, what is the smallest sample size n required if the margin of error (suppose α is set to be 0.05), in estimating the population proportion p, is set to be less than 0.03?
 - (A) 1068 (B) 1000 (C) 1025 (D) 996 (E) None for all the above four.
- 18. (4 points) It is known that $X_1, X_2, ..., X_n$ is a random sample from $N(\mu, \sigma^2)$. The sample mean \overline{X} and sample variance $S^2 = \sum_{i=1}^n (X_i \overline{X})^2 / (n-1)$ is found to be 4 and 2.25, respectively. Suppose that n is large enough, then

(A) P(4-1.645×
$$\frac{1.5}{\sqrt{n}}$$
 < μ < 4+1.645× $\frac{1.5}{\sqrt{n}}$) = 0.9

(B)
$$P(4-1.96 \times \frac{1.5}{\sqrt{n}} < \mu < 4+1.96 \times \frac{1.5}{\sqrt{n}}) = 0.95$$

(C)
$$P(4-2.33 \times \frac{1.5}{\sqrt{n}} < \mu < 4+2.33 \times \frac{1.5}{\sqrt{n}}) = 0.98$$

- (D) All the above (A), (B) and (C) are true.
- (E) All the above (A), (B), (C) and (D) are wrong.
- 19. (4 points) Consider a normal random variable X with $\mu = 0$ and standard deviation $\sigma = 1$. Which of the following is true?

$$(A) P(X > 1.645) = 0.1$$

(B)
$$P(X < -1.96) = 0.05$$

(C)
$$P(X < 3) > 1 - P(X > -3)$$

(D)
$$P(X < 0.5) = P(X > -0.5)$$

(E)
$$P(X = 0) \neq P(X = 1)$$
.

20. (5 points) Random variable X follows exponential distribution with density

$$f(x; \lambda) = \lambda e^{-\lambda x}, x > 0, \lambda > 0$$

- (A) $P(X > x_0) = 1 e^{-\lambda x_0}$, some positive value x_0 .
- (B) The exponential random variable X has the property

$$P(X>x_0+\Delta|X>x_0)=P(X>\Delta), \forall \Delta>0,$$

科目名稱統計學	At さL 館	類組代碼	D38
	然 訂字	科目碼	D3801
※本項考記	战依簡章規定各考科均「不可以」使用計算機	本科試題	共計 9 頁

i.e. a used one likes a new one.

- (C) The skewness of X, like normal distribution, can be zero, positive, or negative.
- (D) $E(X) = \lambda$, and $Var(X) = \lambda$.
- (E) None for the above four.
- 21. (5 points) Assume that $X_1, X_2, ..., X_{n_1}$ is a random sample from some population with mean μ_1 , variance σ^2 ; $Y_1, Y_2, ..., Y_{n_2}$ is another sample from population with mean μ_2 , variance σ^2 . We are interested in estimating the difference of the two population means.
 - (A) One point estimator of μ_1 μ_2 is the difference of the sample means $\overline{X} \overline{Y}$;
 - (B) We had better apply $S_p^2 = \frac{(n_1-1)S_X^2 + (n_2-1)S_Y^2}{n_1+n_2-2}$ to estimate σ^2 , where S_X^2 and S_Y^2 are sample variances for X-sample and Y-sample.
 - (C) The standard error of $\overline{X} \overline{Y}$ is $S_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$, where S_P is the root of S_P^2 .
 - (D) Suppose both n_1 and n_2 are large, a 95% confidence interval for μ_1 μ_2 is, approximately, $(\overline{X} \overline{Y} 1.96 \times S_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, \overline{X} \overline{Y} + 1.96 \times S_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}})$.
 - (E) True for all the above four.
- 22. (4 points) In testing the hypothesis $H_0: \mu = \mu_0$ vs $H_a: \mu > \mu_0$, where μ_0 is some known value.
 - (A) As the sample size n gets larger, the sample mean \bar{x} will be closer to μ , so p-value is getting smaller.
 - (B) As the sample size n gets larger, then the probability of rejecting H_0 is larger because the p-value is tending to be smaller than α , the significant level.
 - (C) Two group of persons are collected to test H_0 : $\mu = \mu_0$, one obtained $\overline{x_1} \mu_0 = 10$, the other got $\overline{x_2} \mu_0 = 5$. If the one with $\overline{x_2} \mu_0 = 5$ is found to be significant, one with $\overline{x_1} \mu_0 = 10$ would be more significant.
 - (D) True for all the above three.
 - (E) False for the above four.

科目名稱 統計學	ひょうし 館	類組代碼	D38
	科目碼	D3801	
※本項考記	试依簡章規定各考科均「不可以」使用計算機	本科試題	共計 9 頁

23. (5 points) The following data are collected to examine the existence of treatment effect:

	Treatment			
1	2	3		
20	22	40		
30	26	30		
25	20	28		
33	28	22		

- (A) The mean square due to treatments (MSTR) equals to 36.
- (B) The mean square due to error (MSE) equals to 34.
- (C) The test statistic to test the null hypothesis equals to 1.06.
- (D) The null hypothesis is to be tested at the 1% level of significance. Then p-value is greater than 0.1.
- (E) True for all the above four.

 $F_{0.975}(9,15) = 0.265, F_{0.95}(9,15) = 0.327, F_{0.05}(9,15) = 2.59, F_{0.025}(9,15) = 3.12.$