臺灣綜合大學系統 114 學年度學士班轉學生聯合招生考試試題

科目名稱	材料力學	類組代碼	D37
		科目碼	D3793
· · · · · · · · · · · · · · · · · · ·	· 坦 · · · · · · · · · · · · · · · · · ·	太科試題	共計 1 頁

※本項考試依簡章規定所有考科均「不可」使用計算機。

本科試題共計 1 負

- 1. A steel pipe of thickness $\,t_s\,$ and an aluminum pipe of thickness $\,t_a\,$ are securely bonded together to form a composite cylinder. The aluminum pipe has an inner radius $\,r_{\!o}$, and the cross-section of the composite cylinder is shown in Fig.1. For the steel, the Young's modulus is E_s and the Poisson's ratio is v_o , while for the aluminum, the Young's modulus is E_a and the Poisson's ratio is also v_o .
 - (a) Given that the composite cylinder is subjected to a force P applied at the origin along the positive x-axis, determine the maximum stress in both the aluminum and the steel, as well as the change in the inner radius of the steel. (20%)
 - (b) Given that the composite cylinder is subjected to a force $\,P\,$ applied at $\,y=r_{\!o}\,$ along the positive x-axis, determine the maximum stress in both the aluminum and the steel. (15%)
 - (c) Given that the composite cylinder is subjected to a force $\,P\,$ applied at $\,y=r_{\!o}\,$ along the positive z -axis and another force P applied at $y=-r_o$ along the negative z -axis, determine the maximum stress in both the aluminum and the steel. (15%)

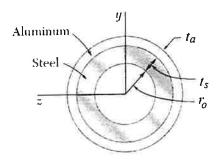
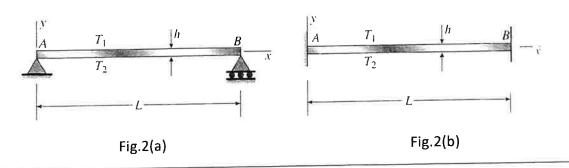



Fig. 1

- 2. A beam AB of length $\,L\,$, width $\,b\,$ and height $\,h\,$ undergoes a temperature change such that the top of the beam is at temperature T_1 and the bottom of the beam is at temperature T_2 . Assume that the beam AB has an elastic modulus $\ E$ and a thermal expansion coefficient lpha.
 - (a) If the beam AB is simply supported, as shown in Fig.2(a), and $T_1 > T_2$, find the maximum deflection of the beam and the reactions at supports A and B. (15%)
 - (b) If both ends A and B are fixed, as shown in Fig.2(b), and $T_1=T_2$, find the maximum deflection of the beam and the reactions at the ends A and B. (15%)
 - (c) If both ends A and B are both fixed, as shown in Fig.2(b), and $T_1 < T_2$, find the maximum deflection of the beam and the reactions at the ends A and B. (20%)

